【零】、题目
求 ∫∫∫Ω(x2+z)dv,Ω是由 z=√(x2+y2) 与 z=1 围成的几何体
【一】、绘制图像
利用matlab绘制几何体Ω
>> ezmesh("(x^2+y^2)^0.5")
>> hold on
>> ezmesh("1")
显然,这是一个以z轴为母线,顶点为(0,0,0)底面为z=1的倒圆锥
【二】、用投影法与极坐标法求解
- 沿z轴往xoy面投影,可在xoy上得到区域Dxy:x2+y2≤1
- 可知对z积分时,其上限为1,下限为√(x2+y2)
∬Dxyda ∫1√(x2+y2) (x2+z) dz
- = ∬Dxy (x2z + 1/2z2)|1√(x2+y2) da
- = ∬Dxy (x2+1/2-x2√(x2+y2)-(x2+y2)/2) da
- 转换为极坐标,可知0≤θ≤2π,0≤r≤1,令 x=rcosθ,y=rsinθ,代入有
∬Dxy (x2+1/2-x2√(x2+y2)-(x2+y2)/2) da
- = ∫2π0dθ ∫10 r(r2cos2θ+1/2-r3cos2θ-r2/2)dr
- = ∫2π0dθ ∫10 (r3cos2θ +r/2-r4cos2θ-r3/2)dr
- = ∫2π0 (r4cos2θ/4+r2/4-r5cos2θ/5-r4/8)|10 dθ
- = ∫2π0 (cos2θ/20+1/8) dθ
- = θ/8 | 2π0+1/20∫2π0 (cos(2θ)+1)/2 dθ
- = π/4+θ/40|2π0+1/40∫2π0cos(2θ)d2θ
- = π/4+π/20
- = 3π/10
【三】、matlab求解
>> syms x y z r a
>> x=r*cos(a)
x =
r*cos(a)
>> y=r*sin(a)
y =
r*sin(a)
>> f1=int(x^2+z, z, (x^2+y^2)^0.5, 1)
f1 =
r^2*cos(a)^2 - cos(a)^2*(r^2)^(3/2) - r^2/2 + 1/2
>> f2=int(r * f1, r, 0, 1)
f2 =
cos(a)^2/20 + 1/8
>> result=int(f2, a, 0, 2*pi)
result =
(3*pi)/10